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 Force measurements and flow visualization for transversely oscillating rectangular and
 octagonal profiles are presented .  Flow fields are analysed ,  classified and related to the fluid
 forces and to the type of excitation of eventual fluid-elastic oscillations .  The interaction of
 instability-induced and movement-induced excitation is shown ,  as well as the interaction of
 impinging leading-edge and trailing-edge vortices .  The mechanisms leading to an energy
 transfer from the fluid to the body are associated with the phase shift of the fluctuating lift
 forces relative to the body oscillation .  The abrupt change of phasing ,  observed within the
 range of synchronization of body motion and vortex shedding ,  is explained by an alteration
 of the timing in the formation of the synchronized vortices at the trailing-edge .  Aspects of
 resonance and annihilation of lift forces are discussed with respect to the formation of
 vertical structures at the leading- and trailing-edge .

 ÷   1997 Academic Press Limited

 1 .  INTRODUCTION

 T HE OSCILLATION OF A BODY IN A FLOWING FLUID  creates a time-dependent ,  three-
 dimensional flow field which in turn gives rise to the fluctuating pressure field on the
 surface of the body ,  involving most complex fluid / structure interactions .  This is true for
 airfoils and even more for bluf f bodies .  Bearman (1985) calls it ‘‘one of the most
 complicated but most challenging problems in fluid mechanics’’ ;  a statement which can
 be confirmed a decade later ,  more than ever .  Many basic aspects of bluf f-body fluid
 dynamics have been uncovered through their interaction with the body oscillation and
 much ef fort has been devoted to finding the correlation between excitation force and
 flow characteristics (Naudascher & Rockwell 1994) .  It is of great importance to
 understand the fluid dynamic mechanism of bluf f body-vortex excitation ,  if one wants
 to predict ,  control and eventually suppress exciting forces (Rockwell 1990) .

 A first step for the synthesis of such fluid-dynamic problems becomes possible
 through classification of the predominant ef fects .  In the following ,  classifications
 employed by Naudascher & Rockwell (1994) are briefly summarized because they will
 be used in the discussion of the experimental findings described in this paper .
 Naudascher & Rockwell distinguish three types of flow-induced excitation :
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 EIE :  Extraneously induced excitation (e . g .  turbulent buf feting ,  periodic pulsation of
 oncoming flow) ;

 IIE :  Instability-induced excitation (flow instability inherent to the flow created by
 the structure under consideration) ,  e . g .  excitation induced by the von Ka ́  rma ́  n street ;

 MIE :  Movement-induced excitation (fluid forces arising from the movement of the
 body or eventually of a fluid oscillator) ,  e . g .  galloping .

 Frequently ,  the excitation of flow-induced vibration in a real system is complex in a
 sense that EIE ,  IIE ,  and MIE can be present simultaneously .

 Further classification of one important group of IIE concerns the type of wake
 formation behind prismatic bodies (Naudascher & Wang 1993 ;  see also Figure 2) :

 LEVS :  Leading-edge vortex shedding (flow separation at the leading-edge and
 formation of vortices which dominate the near wake of the body) ;

 ILEV :  Impinging leading-edge vortices (flow separation at the leading-edge and
 impingement of the leading-edge vortices at the side surfaces and / or edges of the
 body) ;

 TEVS :  Trailing-edge vortex shedding (decisive flow separation at the trailing-edge
 and vortex-shedding analogue to the von Ka ́  rma ́  n street behind circular cylinders) ;

 AEVS :  Alternate-edge vortex shedding (vortex shedding occurring in a critical
 range of incidence where alternatingly one vortex separates at the leading-edge and the
 other at the trailing-edge) .

 The most important physical parameter of a two-dimensional body subjected to
 vortex-induced (IIE) or galloping (MIE) oscillation is the size and shape of its
 afterbody ,  that is the part of the cross-section downstream of the separation points
 (Parkinson 1989) .  For vortex-induced or galloping type of excitation ,  the pressure
 loading occurs principally on the afterbody surface .  Accordingly ,  a body with a very
 short afterbody will only weakly be excited to oscillations .  Thus a semicircular cylinder
 (D-section) will exhibit both vortex-induced oscillation and galloping ,  if a suf ficient
 initial transverse velocity is given ,  when the flat face is upstream and normal to the
 incident flow .  In this case the flow separates at the sharp edges and the semicircular
 cylinder forms the afterbody .  If ,  however ,  the flat face is downstream ,  the flow will still
 separate at the edges ,  but now there is no afterbody .  The cylinder is then stable
 exhibiting neither vortex-induced oscillation nor galloping (Parkinson 1974) .

 Figure 1 from Chaix (1972) demonstrates how dramatically the size of the afterbody
 may change with minor geometrical modification .  A well developed von Ka ́  rma ́  n
 vortex street (TEVS) in the wake of an octagonal profile is observed in Figure 1(a) .  For
 this profile with a wedge angle of  b  5  10 8 ,  the flow initially separates at the
 leading-edge and then reattached ,  and finally separates at the trailing-edge [Figure
 1(b)] .  Increasing the wedge angle to  b  5  16 8  [Figure 1(c)] ,  the flow separates at 2 / 3 of
 L  leaving an afterbody exposed to pressure loading .  For this case ,  not only is the
 separation shifted upstream but ,  in addition ,  temporary impingement of the shear
 layers occurs at the sides of the afterbody .

 The ef fects mentioned above can be discussed by looking at the variations of the
 Strouhal number .  As a reminder ,  the nondimensional Strouhal number can be
 interpreted as the ratio of two time scales :  one imposed by the body oscillation ,  1 / f e  ,
 and the other by the freestream velocity and the body geometry ,   D  / V .  Figure 2 gives
 an overview on the variations of Strouhal number in the dif ferent regimes classified as
 LEVS ,  ILEV ,  and TEVS as a function of the elongation ratio  L / D .  This graph is
 redrawn after presentations published by Naudascher & Wang (1993) ,  Thang &
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 Figure 1 .  Visualization of flow separation from a cylinder of octagonal cross-section (Chaix 1972) :  (a)
 development of the Ka ́  rma ́  n vortex street in the wake for  b  5  10 8 , d  / D  5  0 ? 6 , D  / L  5  0 ? 33 ,  a  5  0 8 ,
 Re  5  3 ? 7  3  10 4 ,   S ne

 o  5  0 ? 18 ;  (b) flow separation at the leading-edge and at the trailing-edge ;  (c) upstream
 shifting of the points of separation by increasing the wedge angle  b  ,  for  b  5  16 8 , d  / D  5  0 ? 4 , D  / L  5  0 ? 33 ,

 a  5  0 8 ,  Re  5  3 ? 7  3  10 4 .

 Naudascher (1991) and Knisely (1990) .  The data included were collected from
 experiments with non-oscillating profiles of various cross-sections at mostly low
 turbulence levels .  It is reported by Nakamura & Yoshimura (1982) that the
 ILEV-excitation is especially sensitive to turbulence intensity .  Turbulence can strongly
 influence the locations of separation and reattachment as well the development of the
 separated shear layers .  Detailed studies of ILEV-excitation were described by
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 Nakamura & Nakashima (1986) on the H-section profile which is particularly sensitive
 to this kind of excitation .  Nakamura  et al .  (1991) found that the Strouhal number based
 on the side length  L  of a section is constant and equal to 0 ? 6 n ,  where  n  is an integer .
 An interesting feature is that ILEV is not af fected by the presence of a splitter plate in
 the wake ,  while TEVS is largely suppressed—which is a way to distinguish the two
 phenomena .

 Figure 2 shows the remarkable jumps and the double frequencies occurring with
 elongation ratios of  L / D  <  2 – 3 and  L / D  <  4 – 7 ,  which mark the limits between the
 three flow regimes .  These jumps are caused by the transitions of the significant vortex
 formations from the leading-edge to the trailing-edge .  For very large elongation ratios ,
 the Strouhal number ,  defined in terms of the thickness  D  of the cross-section ,  decreases
 due to the growing boundary-layer thickness at the sides of the profile ,  which widen the
 wake .

 Movement-induced excitation (MIE) ,  in contrast to IIE ,  is inherently linked to body
 movements and disappears when the body is at rest .  In the case of an initial
 displacement ,  an unsteady force is induced that alters the fluid forces on the body .  If
 this alteration leads to negative damping or to a transfer of energy to the moving body ,
 a self-excited body vibration is possible .  The negative fluid dynamic damping can also
 considerably reduce the total damping available to the body or structure .  The term of
 galloping  is usually applied to the large-amplitude ,  low-frequency oscillation of this
 category .  Any bluf f profile that can gallop can also exhibit vortex-induced vibrations
 (IIE) ,  since an appreciable afterbody is a requirement for both .  Characteristic of
 profiles sensitive to galloping are the negative lift-curve slopes as first described by Den
 Hartog (1934) .  Quasi-steady considerations [e . g .,  Parkinson (1974)] at very low
 frequencies of oscillation lead to fluid forces acting in phase with the instantaneous
 oscillation velocity .

 The excitation mechanisms that will be considered in this paper are of type MIE and
 IIE .  The goal is to provide insight into the interaction mechanisms of movement-
 induced and instability-induced excitation .  Two dif ferent prismatic bodies are the
 objects under examination :  a rectangular profile with an elongation ratio  L / D  5  2 ,  and
 an octagonal profile with  L / D  5  3 ? 33 (see Figure 3) .  These dif ferently shaped profiles
 show opposite behavior with respect to MIE :  the rectangular profile has a negative
 lift-curve slope and the octagonal profile has a positive slope .  Chaix (1972) showed that
 certain sharp-edged prismatic profiles ,  such as profiles with 6 ,  8 ,  or 12 edges may show
 unstable behavior .  In terms of vortex formation type (IIE) the rectangular profile
 belongs to the class of ILEV ,  and the octagonal profile to TEVS for flow without
 incidence .  Both profiles show AEVS for larger incidence angles .

 Leading-edge vortex shedding is typically observed for the square section cylinder
 (see Figure 2) .  The dynamic behavior of LEVS-sensitive profiles has been investigated
 for example by Bearman  et al .  (1987) ,  Bearman & Luo (1988) ,  Nakamura & Mizota
 (1975) and Nakamura & Matsukawa (1987) .

 2 .  EXPERIMENTS

 Because of the complexity of flow-induced vibrations ,  one has to focus on selected
 phenomena in experimental studies .  A high degree of simplification is needed in order
 to reduce the number of parameters influencing the results .  In the present study ,  the
 following simplifications were employed .  The oncoming flow was uniform and free of
 turbulence ,  which is characteristic of the towing tank experiments .  The geometry
 employed in the present study involved two generic configurations ,  both being
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 Figure 3 .  Time-mean life coef ficient ,   C #  L  ,  and drag coef ficient ,   C #  D  ,  of the non-oscillating (a) rectangular
 profile and (b) octagonal profile for varying angle of attack  a   and Reynolds numbers ;  for  h ̂  5  0 , S e  5  0 .

 prismatic bodies with constant cross-section :  (a) a rectangular profile with cross-
 sectional dimensions  D  5  0 ? 03  m and  L  5  0 ? 06  m ;  (b)  an octagonal profile with
 dimensions  D  5  0 ? 03 , d  5  0 ? 015  m ,   b  5  12 8 ,  and  L  5  0 ? 1  m (see Figure 1 for definitions
 of these parameters) .  For both of these body configurations ,  the spanwise dimension
 was 0 ? 75  m .  Moreover ,  the surfaces of these bodies were hydraulically smooth ,  and the
 corners had sharp edges .  In order to minimize end ef fects ,  end-plates were employed .
 Both bodies were subjected to sinusoidal forcing in the direction transverse to the
 oncoming flow for two values of incidence angle :   a  5  0 8  and 10 8 .

 The parameters used to define the experiment are the angle of attack  a  ,  the
 Reynolds number Re  5  VL / …  ,  the Strouhal number  S e  5  f d D  / V ,  and the dimensionless
 amplitude of oscillation  h ̂  5  y ̂  / D ,  in which  V  is the velocity of the oncoming flow .

 In order to characterize the instantaneous flow patterns in relation to the loading on
 the bodies ,  the flow was visualized using the hydrogen bubble technique .  A platinum
 wire of diameter 0 ? 025  mm was used to generate pulsed timeline markets ,  which were
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 illuminated with stroboscopes .  Images of these timeline patterns were recorded on a
 video system .  The camera head of the video was located under water .  Force
 measurements were undertaken using six piezoelectric transducers mounted within the
 two end-plates .  The force coef ficients were evaluated in the frequency domain ,  and the
 phase shifts were determined using cross-spectra of the measured forces and the
 motion of the body .  Further details of the experimental set-up and the evaluation
 techniques are given by Staubli (1983) and Deniz (1993) .

 At this point ,  some definitions will be made .  First ,  the lift and drag coef ficients are
 defined by

 C L ( t )  5
 F L ( t )

 1 – 2 r V  2 A
 ,  C D ( t )  5

 F D ( t )
 1 – 2 r V  2 A

 ,  (1)

 respectively .
 The harmonic motion of the body is

 h  ( t )  5  h ̂  cos( v e t ) ,  (2)

 where  h ̂  5  amplitude of oscillation / D ,  and  v e  5  angular frequency of the forced
 oscillation .

 Analysis of the frequency components contributing to the lift force shows that
 basically four contributions are found :

 C L ( t )  5  C #  L  1  C L e ( t )  1  C L o ( t )  1  stochastic  contributions

 5  C #  L  1  C ̂  L e  cos( v e t  1  Θ )  1  C ̂  L o  cos( v o t )  1  stoch .  contr .,  (3)

 with  C L e ( t )  5  lift force component at the excitation frequency ,   C L o ( t )  5  lift force
 component at the frequency of instability-induced wake formation ,   Θ  5  phase shift
 between the lift component  C L e ( t ) and the motion  h  ( t ) ,  and  v o  5  angular frequency of
 the lift component  C L o ( t ) ;  for the lift coef ficient  C L o   no phase angle is defined .  The
 spectral components  C L e ( t ) and  C L o ( t ) were determined from spectral density
 distributions .  The phase was  Θ   determined from cross-spectral density distributions of
 the motion  h  ( t ) and lift force component  C L e ( t ) .  The phase  Θ   determines whether
 there is an energy transfer from the fluid to the body or the opposite :

 0 8  ,  Θ  ,  180 8  energy  transfer  profile  5  fluid
 0 8  .  Θ  .  180 8  energy  transfer  fluid  5  profile

 (4)

 Four dif ferent Strouhal numbers are defined :

 S e  5
 f e D
 V

 ,  S *  5
 f  * D

 V
 ,  S o  5

 f o D
 V

 ,  S ne
 o  5

 f  ne
 o  D
 V

 ;  (5)

 thus ,  corresponding to the frequencies involved ,   S e   is the nondimensional excitation
 frequency ,   S * the nondimensional frequency of impinging vortices ,   S o   the nondimen-
 sional frequency of wake vortex formation ,  and  S ne

 o    the nondimensional frequency of
 Ka ́  rma ́  n vortex shedding (where  ne  denotes  n o external  e xcitation ;  i . e .,  a stationary
 profile .

 Experimentally frequencies were determined by means of power spectral densities of
 the measured lift forces acting on the profiles .

 3 .  MEASUREMENTS WITH NON-OSCILLATING PROFILES

 The two investigated profiles—the rectangular and the octagonal—were selected for
 this investigation because they show opposite lift characteristics .  While there is an
 increasingly negative lift force for angles of attack up to 6 8  in case of the rectangular
 profile [Figure 3(a)] ,  the lift is positively growing up to about 8 8  for the octagonal
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 profile [Figure 3(b)] .  A necessary criterion for stability with respect to MIE is ,
 according to Den Hartog (1934) ,

 d C L

 d a
 1  C D  .  0 .  (6)

 This criterion is fulfilled for the octagonal profile but not for the rectangular profile ,
 opening up the possibility of MIE in the range of  2 6 8  ,  a  ,  1 6 8 .  To which frequencies
 the rectangular profile is susceptible to excitation will be discussed on the basis of the
 energy transfer from the fluid to the body in Figures 6 and 7 .

 The change of sign of the slope d C L / d a   of the rectangular profile at  a  <  6 8  [Figure
 3(a)] is caused by the reattachment on the flow-facing side of the profile .  For the
 octagonal profile the change of sign occurs at  a  <  8 8  [Figure 3(b)] and is caused by the
 upstream shifting of the separation from the trailing-edge on the flow opposite side
 with increasing angle of attack (see also Figure 4) .

 Figure 4 shows the development of the Strouhal number  S ne
 o    with increasing angle of

 attack  a   for the non-oscillating case .  The rectangular profile [Figure 4(a)] shows for the
 transition from ILEV to AEVS a jump in frequency .  A maximum of  S ne

 o    is found for
 about 9 8 .  Larger incidence leads to continuous reduction of the vortex formation
 frequency .  Due to the flow separation at sharp corners ,  no significant influence of
 Reynolds number is observed .

 For the octagonal profile [Figure 4(b)] three typical ranges have to be distinguished .
 For small incidence ,  the Strouhal number of 0 ? 18 is representative for TEVS as can be
 seen from comparison with Figure 2 .  For angles of attack  a  .  12 8  clearly defined AEVS
 occurs .  For both profiles the decay of  S ne

 o    observed for large incidence can be explained
 by the increasing width of the wake ,  as demonstrated for example by Roshko (1954)
 and Knisely (1990) .  In an intermediate range 5 8  ,  a  ,  12 8  [Figure 4(b)] ,  no periodic
 force fluctuations could be evaluated for the octagonal profile .

 Figure 5 displays magnitude spectra of the lift forces acting on the non-oscillating
 rectangular profile for dif ferent angles of attack .  The spectra show the dominant peaks
 in the frequency domain associated with the wake vortes formation  S o ( a  ,  6 8 ) and
 AEVS ( a  .  6 8 ) and ,  at an incidence of  a  5  6 8 ,  random or intermittent ef fects which are
 typical for the transition from one regime to another .

 4 .  MEASUREMENTS WITH OSCILLATING PROFILES

 The profiles were oscillated at a variable frequency ,   f e  ,  by means of a hydraulic
 actuator .  The drive and the profile were stif f enough to avoid any feedback of the fluid
 forces on the motion of the body .  Measurements with varying frequency were
 performed at three dif ferent amplitudes of oscillation .  The wide range of frequency
 variation allowed investigation of the ef fects of MIE ,  IIE ,  and fluid dynamic mass .  For
 the experiments with forced oscillation the Reynolds number was kept constant at
 Re  5  10 5 .  An increasing amplitude at a constant frequency corresponds to an increased
 maximum of the angle of attack  a ̂  5  arctan(2 π h ̂  S e ) .  At low frequencies ,  only in the
 case of zero angle of attack ,  a linear relationship of the lift force and amplitude may be
 expected ,  if the quasi-steady condition is fulfilled .  At higher oscillation frequencies ,
 where inertia ef fects dominate ,  the lift force will grow linearly with amplitude .

 Figures 6(a) and 7(a) show the lift coef ficients  C ̂  L e   for the rectangular profile as a
 function of the nondimensional excitation frequency ,   S e .  Magnitudes increase with
 increasing frequencies for both cases ,  that is without ( a  5  0 8 ) and with incidence
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 Figure 4 .  Variation of the Strouhal number for increasing angle of attack  a   for (a) the non-oscillating
 rectangular profile and (b) the octagonal profile ;  for  h ̂  5  0 , S e  5  0 .

 ( a  5  10 8 ) corresponding to dif ferent flow regimes ,  as can be seen in Figure 3 .  In Figures
 6(a) an 7(a) a first ,  rather broad-banded ,  local maximum is found near the frequency
 S ne

 o    where resonance with the instability-induced excitation occurs .  For excitation
 frequencies above  S e  5  0 ? 15 , C ̂  L e   increases linearly with the amplitude  h ̂    and propor-
 tional to the square of  S e   according to the inertia ef fects of the surrounding fluid .  The
 basic trends of the response characteristics of the cases with and without incidence are
 very much alike ;  at high excitation frequencies fluid inertia ef fects dominate the flow
 field .  However ,  with respect to the possibility of fluid-elastic oscillations ,  the two cases
 dif fer considerably ,  as can be concluded from the phase angle between the lift force
 and the displacement .
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 Figure 5 .  Magnitude spectra of the lift forces acting on the non-oscillating rectangular profile for
 increasing angle of attack  a .

 Figures 6(b) and 7(b) display the phase  Θ   for the cases without and with incidence of
 the rectangular profile .  Phase angles above 360 8  at the lowest excitation frequencies in
 Figure 6(b) indicate an energy transfer from the fluid to the body ,  meaning that
 galloping oscillations of elastically mounted profiles could be excited .  According to the
 phase angle in Figure 7(b) no such movement-induced excitation is possible for an
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 Figure 6 .  Response characteristics of the rectangular profile at an angle of attack  a  5  0 8  showing :  (a) the
 externally excited life component  C ̂  L e  ,  and (b) the phase angle  Θ   between  C L e ( t ) and the displacement  h  ( t ) .

 In all cases ,  Re  5  10 5 ;  — j — ,   h ̂  5  0 ? 05 ;  — h — ,   h ̂  5  0 ? 10 ;  — r — ,  h ̂  5  0 ? 30 .

 angle of attack of  a  5  10 8 ,  confirming the Den Hartog criterion applied to the data of
 Figure 3(a) .

 At frequencies above the resonance observed for  C ̂  L e  ,  the phase angles  Θ   between
 the lift force and the displacement again pass a sector of possible fluid-elastic excitation
 with an energy transfer from the fluid to the body .  This sector lies for  a  5  0 8  near
 S e  5  S * ,  and for  a  5  10 8  near  S e  5  S 0 .  The observed phase jump in this range is
 associated with a remarkable change of the vortex formation and its phasing with
 respect to the displacement ,  as will be shown in Section 5 .  This typical instability-
 induced excitation mechanism is observed irrespective of the incidence of the flow in a
 similar manner in Figures 6(b) and 7(b) .

 The fluid-dynamic response of the rectangular profile for  a  5  0 8  is dominated by the
 ILEV behavior [Figure 6(a ,  b)] .  For  a  5  10 8  the AEVS controls the flow field .
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 Figure 7 .  Response characteristics of the rectangular profile at an angle of attack  a  5  10 8  showing :  (a) the
 externally excited lift component  C ̂  L e ;  and (b) the phase angle  Θ   between  C L e ( t ) and the displacement  h  ( t ) .

 In all cases ,  Re  5  10 5 ;  — j — ,   h ̂  5  0 ? 05 ;  — h — ,   h ̂  5  0 ? 10 ;  — r — ,   h ̂  5  0 ? 30 .

 The frequency where the phase jump occurs is influenced by the displacement
 amplitude .  With increasing amplitude ,  the phase jump becomes slightly larger and
 steeper and is shifted towards lower frequencies .

 Figures 8 and 9 show the response characteristics (lift and phase) of the octagonal
 profile with and without incidence .  Almost no ef fects of resonance are detectable ,
 either in an amplification of the lift coef ficient or in a phase jump .  The lift forces at the
 higher frequencies of oscillation are dominated by fluid inertia ef fects that are
 confirmed by the phase angles tending to a zero value .  For very low frequencies of
 oscillation the phase  Θ   tends to  2 90 8  indicating forces acting opposite to the
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 Figure 8 .  Response characteristics of the octagonal profile at an angle of attack  a  5  0 8  showing :  (a)
 externally excited lift component  C ̂  L e ;  and (b) the phase angle  Θ   between  C L e ( t ) and the displacement  h  ( t ) .

 Re  5  10 5 ;  — j — ,   h ̂  5  0 ? 05 ;  — h — ,  h ̂  5  0 ? 10 ;  — r — ,  h ̂  5  0 ? 30 .

 oscillation velocity ,  which is equivalent to viscous damping ,  allowing quasi-steady
 modeling of the forces .

 It is noted that the Strouhal number of the octagonal profile is defined with its
 thickness  D  and not with the thickness  d  of the trailing-end .  Using the trailing-end
 thickness ,   d  5  2 D ,  would lead to a Strouhal number of trailing-edge vortex shedding of
 the non-oscillating body of  S ne

 od  5  0 ? 18 instead of  S ne
 oD  5  0 ? 36 .

 5 .  FLOW VISUALIZATION

 Flow visualization is a valuable tool for interpretation of the interactions of the flow
 structures with an oscillating body and to clarify the fluid dynamic ef fects leading to the
 measured response characteristics .  In the following sequences of pictures taken with
 the rectangular profile (angle of attack  a  5  0 8 ) oscillating at a constant displacement
 amplitude of  h ̂  5  0 ? 1 will be discussed .  Frequencies were varied in the range of  S e  5  0
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 Figure 9 .  Response characteristics of the octagonal profile at an angle of attack  a  5  10 8  showing :  (a)
 externally excited lift component  C ̂  L e ;  and (b) the phase angle  Θ   between  C L e ( t ) and the displacement  h  ( t ) .

 Re  5  10 5 ;  — j — ,   h ̂  5  0 ? 05 ;  — h — ,  h ̂  5  0 ? 07 ;  — r — ,  h ̂  5  0 ? 10 .

 to 1 .  In order to obtain better picture quality ,  the Reynolds number was lowered for
 visualization by a factor of 10 .

 A general feature of the flow patterns is the superpositon of a series of phenomena .
 The separation at the leading-edge produces unstable shear-layers ,  leading to small-
 scale Bloor – Gerrard vortices (Bloor 1964 ;  Gerrard 1966) .  In the far wake behind the
 profile ,  the shear-layers reorganize to the von Ka ́  rma ́  n vortex street at the nondimen-
 sional frequency  S o .  Small-scale vortices convecting on the surfaces and vortices in the
 far wake will have practically no influence on forces acting upon the non-oscillating
 rectangular profile .  The first ef fect will cancel ,  due to the occurrence of a series of
 counteracting vortices ,  and the second induces only very small pressure loading on the
 body ,  due to the distance of the vortex formation from the body .  The shear layers
 separated from the leading edges impinge at a frequency  S * alternately on the upper
 and lower surfaces and play an essential role in case of the rectangular profile with
 L / D  5  2 .
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 Figure 10 .  Overview of typical flow structures observed around the rectangular profile in relation to
 amplitude and phase of the measured lift forces ;   a  5  0 8 ,  h ̂  5  0 ? 10 ;  Re visual  .  10 4 ,  Re meas  .  10 5 .

 If the body starts to oscillate ,  all of the above-mentioned ef fects are altered and
 when there is coincidence of the excitation frequency  S e   with one of the instabilities ,
 vortex intensities are amplified and pressure loadings eventually increase .

 Figure 10 gives an overview of typical vortex formation in relation to the response
 characteristics of the lift force .  Data are equivalent to those displayed in Figure 6 .  The
 sketches of vortices are drawn after video recordings and show schematically the
 dominant ef fects .  In Figures 11(a) to 11(c) additional information on variations of the
 flow patterns with increasing oscillation frequency is given by means of views at the
 upper surface and at the wake for two instants during one cycle of oscillation .  The
 pictures showing the flow field above the upper surface are taken with a platinum wire
 just upstream of the profile ,  while for pictures of the wake ,  a wire was mounted right
 behind the trailing end .  Time sequences of development in the wake as a function of
 oscillation frequency are displayed in Figure 12 .  These picture series allow us to observe
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 the vortex formation in more detail ,  since one cycle of body oscillation is resolved with
 eight frames ,  and a ninth is showing the degree of periodicity of the vortical structures .

 Point  ñ 1   characterizes the non-oscillating case .  The flow separates at the leading-
 edge and no reattachment occurs .  The separated shear-layers show the distinct
 formation of Bloor-Gerrard vortices convecting into the wake .  The formation region of
 the wake vortices (Ka ́  rma ́  n vortices) behind the trailing-edge is large and cannot be
 detected in the close-up view of the wake displayed in Figures 11 and 12 .

 Point  ñ 2  ,  at very low oscillation frequency ,  corresponds to a range of frequencies
 where quasi-steady considerations are valid ,  that is ,  that the flow fields and forces are
 equal to the stationary case with small incidence (e . g .,  for  S e  5  0 ? 022 ,  a ̂  5  0 ? 8 8 ) .  It is for
 these low frequencies that the rectangular profile tends to be sensitive to movement-
 induced galloping oscillations .  The time sequence displayed in Figure 12 demonstrates
 that the body oscillation does not force periodicity in the wake flow field for this very
 low oscillation frequency .

 With increased oscillation frequency the formation region of wake vortices becomes
 shorter and the organization of the vortices is enhanced .  Point  ñ 3   lies at the beginning
 of the range with amplified lift coef ficients .  The frequency  S e  5  0 ? 078 of point  ñ 4   is
 identical to the frequency of the Ka ́  rma ́  n vortex shedding of the non-oscillating
 rectangular profile  S ne

 o  5  0 ? 078 .  Here ,  the vortex formation synchronizes with the body
 motion and the vortex formation is intensified ,  as can be seen from the time sequence
 of Figure 12 .  With increasing frequency of oscillation ,  the vortex formation region in
 the wake is reduced in length .

 Major changes with respect to the alternating vortex formation in the wake occur in
 the flow field visualized in point  ñ 5  .  Movement-induced vortices at the leading edge
 and vortices forming at the trailing edge coalesce behind the trailing edge and form
 large vortices in the far wake .  These coalescing vortices have the same sense of
 rotation ;  however ,  since on the opposite side counter-rotating vortices form ,  there is a
 certain annihilation of induced forces at the oscillation frequency .  This ef fect is shown
 in Figure 6(a) as a locally attenuated increase of the lift coef ficient  C L e .  A further
 observation is that the location of reattachment of the leading-edge vortices is shifted
 upstream with increasing frequency .

 The frequency of point  ñ 6   lies close to the frequency  S * of the impinging vortices
 observed for the non-oscillating profile .  Accordingly ,  the vortex separating from the
 leading-edge is enhanced .  Again there is always coalescence of two vortices of the same
 sense of rotating behind the trailing-edge ;  however ,  this time there is a marked change
 in the phasing of the formation of the large wake vortices relative to the movement .
 This phasing reflects the phase jump observed in the lift forces and af fects fluid forces
 which cause a positive energy transfer from the fluid to the body .  A vortex street with
 well defined large vortices is completely synchronized with the movement of the profile
 and the induced oscillations of the near wake (see Figure 12) .  It is in this range of
 excitation frequencies that the magnitudes of the lift coef ficient  C ̂  L e   start to rise again .

 In point  ñ 7   important modulations of the wake vortex formation can be observed .  In
 this case leading-edge vortices convect downstream and interact with vortices formed
 behind the trailing edge ;  however ,  no periodic coalescence or pairing occurs immedi-
 ately at the trailing-edge .  An interesting feature of this frequency is that the convection
 time of the leading-edge vortices ,   T c o n y  5  L / V c o n y  <  L / 0 ? 6 V ,  corresponds approximately
 to the period of oscillation  T con y  <  T e  5  1 / f e  ,  assuming an average convection velocity of
 0 ? 6 times the approach velocity  V .

 Point  ñ 8   relates to an oscillation frequency where fluid inertia dominates the forces .
 The frequency of oscillation is five times higher than that of the Ka ́  rma ́  n vortex street .
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 For each cycle of oscillation small-scale vortices form at the leading-edge and
 propagate along the surfaces downstream .  In the wake there is no discernible
 interaction of these vortices from the lower and upper layers .  Between the upper and
 lower vortex layer the fluid remains almost at rest .  The structure of the wake is
 comparable to that of point  ñ 1  ,  with the wake of the non-oscillating profile .  As the time
 sequence of Figure 12 shows one cycle of the body oscillation ,  variations due to the
 Ka ́  rma ́  n street are not discernible ,  since its period is five times larger .

 6 .  CONCLUSIONS

 The forces acting upon prismatic bodies are directly related to the flow structure and
 the formation of vortices at the leading and trailing edge .  These vortices strongly
 interact with each other as well as with the body surfaces .  All ef fects are very sensitive
 to the geometrical variation such as the elongation ratio of the rectangular profile or
 the machining of leading and trailing edges with a wedge angle ,  as is shown with the
 octagonal profile investigated .  The angle of attack plays an important role and in the
 case of body oscillation ,  so do the frequency and amplitude of oscillation .  Little
 influence is found to arise from the variation of the Reynolds number in these cases .

 For many technical problems of flow-induced oscillations ,  quasi-steady considera-
 tions ,  deduced from lift and drag characteristics ,  are suf ficient if frequencies are low
 enough .  The measured characteristics of the investigated rectangular and octagonal
 profile show opposite slopes at zero incidence and accordingly opposite behaviour with
 respect to movement-induced excitation at low frequencies .  Frequency analysis of
 measured lift forces and flow visualization give evidence that three dif ferent classes of
 vortex formation can be observed with variation of the angle of attack of the profiles :
 impinging leading-edge vortices ,  trailing-edge vortex shedding ,  and alternate-edge
 vortex shedding .

 The unsteady case with profiles oscillating at dif ferent amplitudes and frequencies
 leads to an even larger variety of vortical structures .  The response characteristic of the
 lift force shows resonance in the case of the rectangular profile and almost none for the
 octagonal profile .  Typical for the rectangular profile is a marked jump of the phasing of
 the fluctuating lift forces relative to the body oscillation at  S e  <  S * for  a  5  0 8 .

 The phase angle ,   Θ ,  between the lift forces and the body oscillation is the most
 important quantity with respect to the treatment of technical problems ,  since it allows
 determination of the ranges of positive energy transfer from the fluid ,  that is the ranges
 in frequncy where fluid elastic oscillations of the body are possible .  While for the
 octagonal profile no such ranges can be found ,  there are two for the rectangular profile ,
 one for very low frequencies (galloping ,  MIE) ,  and one for resonance with the
 impinging vortices (IIE) .  The transition from MIE to IIE is characterized by a
 continuous decrease of the phase .

 A distinct feature of the rectangular profile ,  oscillating with a mean incidence of
 a  5  10 8 ,  is that  no  MIE is observed .  For  a  5  10 8  this profile shows AEVS behaviour
 with resonance and phase jump at  S e  <  S o .

 A coherent statement ,  through all the experimental data collected ,  is that the
 octagonal profile investigated is insensitive to IIE- or MIE-type of induced vibrations .

 At high oscillation frequency ,  fluid inertia ef fects dominate the magnitude of the
 fluid forces .  This is manifested as a linear increase of the lift forces with growing
 amplitude of oscillation ,  for both the rectangular and the octagonal profile .

 The main conclusions from the interrelation of the response characteristics of the
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 rectangular profile ,  at a constant amplitude of oscillation and the flow viaualizations are
 as follows .

 (i)  At very low oscillation frequencies ,  quasi-steady flow is confirmed and the vortex
 formation in the wake is not influenced by the body oscillation .

 (ii)  the resulting vortical structures are synchronized with the body motion in a wide
 frequency range ,  in spite of the fact that the flow patterns vary considerably .

 (iii)  The alteration of the timing in the formation of synchronized vortices at the
 trailing-edge explains the observed phase jump between the fluctuating lift force and
 the body oscillation at  S e  <  S * .

 (iv)  Wake vortex formation is enhanced for resonance at  S e  <  S o   and the formation
 of impinging leading edge vortices is enhanced for  S e  <  S * .

 (v)  It is interesting to note that ,  for the frequency range  S e  <  S o ,  measurements and
 flow visualization reveal no abrupt phase change .

 (vi)  The formation region of the wake decreases with increasing oscillation
 frequency (within the synchronization range) .

 (vii)  The impingement length of the leading-edge vortices decreases with increasing
 oscillation frequency .

 (viii)  Two kinds of vortex coalescence of leading- and trailing-edge vortices are
 observed ,  which lead either to an increase or a reduction of the induced lift forces .

 (ix)  At high oscillation frequency the wavelength of the impinging leading-edge
 vortices becomes short with respect to the wake width and there is no discernible
 interaction of these vortices from the lower and upper layers .

 The observation that for resonance at  S e  <  S o   no phase jump is observed ,  while such
 a jump obviously occurs for  S e  <  S * ,  remains a topic for future research .  The existence
 of such a phase jump in the lift force or fluctuating pressure relative to the body
 displacement within the synchronization range is also a point of discussion for the
 square section cylinder .  Measurements on the square section cylinder performed by
 Bearman & Obasaju (1982) and Nakamura & Mizota (1975) show phase jumps for
 resonance at  S e  <  S o  ,  while for the same profile O ̈  ngo ̈  ren & Rockwell (1988) did not
 observe a phase jump at  S e  <  S o   in their flow visualization but one at considerably
 higher frequencies of oscillation .
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 APPENDIX :  NOMENCLATURE

 A  area ( L  3  span) (m 2 )
 C D  drag coef ficient
 C L  lift coef ficient
 D  thickness of the body cross-section (m)
 d  thickness of the trailing-end (m)
 f  frequency (Hz)
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 F  force (N)
 L  length of the body cross-section (m)
 Re  Reynolds number ,  equal to  VL / …
 S  Strouhal number ,  equal to  fD  / V
 S e  nondimensional excitation frequency
 S *  nondimensional frequency of impinging vortices
 S o  nondimensional frequency of wake vortex formation
 S ne

 o  nondimensional frequency of wake vortex formation (no excitation)
 S B G  nondimensional Bloor-Gerrard frequency
 T  period (s)
 V  freestream velocity (m / s)
 y  displacement of the body (m)
 a  angle of attack ( 8 )
 b  wedge angle ( 8 )
 h ̂  nondimensional amplitude of oscillation ,  equal to  y ̂  / D
 θ  phase angle between body displacement and lift force
 …  kinematic viscosity
 r  density of the fluid
 v  angular frequency (rad / s)


